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1. Introduction and motivation

Let D = {z € C: |z| < 1} be the open unit disc in the complex plane and let .4 denote the class of all functions f analytic in
D normalized by the conditions f(0) =0 and f’(0)=1. An analytic function f is subordinate to g in D, written
f(z) <g(z) (z e D), if there exists a function w analytic in D with w(0) = 0 and |w(z)| < 1 satisfying f(z) = g(w(z)). In par-
ticular, if the function g is univalent in D, then f(z) < g(z) is equivalent to f(0) = g(0) and f(D) c g(D). A function f € A is
starlike if f(D) is a starlike domain with respect to 0, and f € A is convex if f(D) is a convex domain. Analytically, these geo-
metric properties are respectively equivalent to the conditions

Re (zf(z)) >0, orRe (1 +zf”(z)> > 0.

f@) f'@
In terms of subordination, these conditions are respectively equivalent to
Zf'(z) 14z Zf'(z2) 1+z

<——, orl <—.
fo “1=z e "1-2
The subclasses of A consisting of starlike and convex functions are denoted respectively by S7 and CV.

Ma and Minda [18] gave a unified presentation of various subclasses of starlike and convex functions by replacing the
superordinate function (1 +z)/(1 —z) by a more general analytic function ¢ with positive real part and normalized by
the conditions ¢(0) = 1 and ¢’(0) > 0. Further it is assumed that ¢ maps the unit disk D onto a region starlike with respect
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to 1 that is symmetric with respect to the real axis. They introduced the following general classes that envelopes several
well-known classes as special cases:

7' (2)
stig)={f e 4: 32 <o)}
and
— )
cV(p) = {f ceA:1+ 126 =< (p(z)}.
For g <1, let ¢, : D — C be defined by
0,(2) = 1+ (117—22,8)2.

Then the classes ST (¢,) and CV(¢,) reduce to the familiar classes of univalent starlike and convex functions of order f:

on-{rean(f2)-1)
ov(p) ::{f € A:Re (1 +Zj]:(f))) > ,8}.

If ,, : D — Cis the conformal mapping of D onto the domain

Qu={weC:Rew—pu > Jjw- 1]},

and normalized by ¢, ,(0) = 1, then the classes S7 (¢, ,) and CV(¢, ,) reduce to the classes S7 (4, 1) and CV(4, p) of parabolic
starlike and uniformly convex functions. The class CV(4, u) was investigated by Yang and Owa [28], and Frasin [15].

In [3], Biernacki falsely claimed that [ f({)/(d¢ is univalent wheneverfis univalent. Moved by this, Causey [13] consid-
ered a related problem of finding conditions on ¢ such that [;(f( ¢)/0)°d¢ is univalent whenever f is univalent. A survey on
these problems can be found in [20]. In recent years, considerable attentlon has been given to the problem for various classes
of univalent functions, see for example, the works of [1,2,4-12,15-17,22,21,26,27].

For 0 < a < 1, let CC, be the class of functions f analytic in |z| < 1 satisfying |arg(f'(z)/h'(z))| < 3o in D with respect to
some univalent convex function h (depending on f). Suppose |z;| < 1, |z;] < 1,and f € CC,. Then Pommerenke [23] proved that

/ f(220) - 215)

2l T d .
@ =21 Lecc,

Singh [25] showed that 1 foz [f(t) = f(=b))t~'dt is starlike if f is starlike. Analogous results were also proven for convexity
and close-to-convexity. Extending the results of Singh [25], Chandra and Singh [14] proved that the integral

eing) — feive
/f eit — e’W )dC7 (M#l//70<u,l//<2n)

preserves membership in the classes of starlike, convex and close-to-convex functions. The integral operators discussed ear-
lier are generalized in the following form:

Definition 1. For o; > 0 and f; € 4, define the operators

F(2) = Fj,. fy2,2,(2) =/O 11 (%) & (21,2, €D), (1.1)
i=1
G(2) =Gy, foy (2 zH <Zzzlz_721212)> (21,22 € D). (1.2)

Here the powers are chosen to be principal. It is clear that G(z) = zF'(z). With F and G as above, define the classes 7, and
G, respectively by

]:n(flw- . 7fn) = {Ff1,-~fn:l1,lz ﬁ S szhZZ S E}v (13)
and
gn(f1,...,f,1) = {Gflf"-fn':zlvzz f, cA,z1,20 € E} (14)

In the case n = 1, it is assumed that oy = 1in (1.1) and (1.2), and we write F(f) := F1(f) and G(f) := G;(f) respectively.

Ponnusamy and Singh [24] introduced the operator F in (1.1) and investigated its univalence. In this paper, membership
preservation properties of the operators F and G on the subclasses of starlike, convex and close-to-convex functions will be
investigated. We shall also make connections with various earlier works. The following lemma will be required.
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Lemma 1.1 [19]. Let G and H be analytic in D, and let H be univalent and convex. If the range of the function G'/H' is contained in
a convex set A, then so do the numbers [G(z2) — G(z1)]/[H(z2) — H(z1)] for 21,2, € D.

This lemma yields the following result:

Lemma 1.2. Let ¢ be a convex function with ¢(0) = 1 and z1,z, € D. If f € A satisfies the subordination f'(z)/g'(z) < @(z) for
some g € CV, then

f(z2) - f(z12)

52,2 gz < @

2. The Operators F and G on subclasses of convex functions

Theorem 2.1. Fori=1,2,....nleto; >0, 0< By <1andy:=1-31 04(1 — B). For f; € A let Fand G be given by (1.1) and
(1.2) respectively. If f; € CV(B;), then F € CV(y) and G € ST (). In particular, if > j0;(1 — ;) < 1, then F € CV and G € ST.

Proof. Let f; € CV(B;) so that

C A
o T

where ¢, : D — C is the convex function defined by

1 1-2p;
(P/fi (Z) = ha ( ﬁ,)Z.

1-2z
For 0 < ; < 1, ¢, (D) is the half-plane Rew > f; and hence ¢ (D) is a convex domain. Since f; is a convex function, Lemma
1.2 applied to the subordination (2.1) yields

< ¢4, (2), (21)

2,2f((2:2) — 212f(212)

fi(ZzZ) _fi(Z1Z) = (Pﬁi (2)7

or equivalently,
27f(2:2) - 217 (212)} |
“{ fi@2) —f@a) " 22)
A differentiation of (1.1) yields
F(z) = ﬁ <M) ai7

P (2o —21)z

and differentiating logarithmically shows that
ZF"(2) (zzzf z1zf((zlz))
1+——= o]+ . . 2.3
Fio ( Z ) Z @ @) 23)
It follows from (2.3) by using the inequality (2.2) that F € CV(y):
F// / n n
1+ Re? ( (1 - Z oc,) + Z a;Re (zzzf ; ;léf’z()zﬂ)) > (1 -3 oc,-) +> i =7.
i#1 i1 i-1

The result that G € S7 (y) follows from the fact that zF'(z) = G(z) and that F e CV(y). O

Corollary 2.1. Let 0< < 1. Fori=1,2,...,n, let ¢; > 0 and y := 1 — (1 - B)>_L 0. For fi € A, let F be given by (1.1). If
fi e cV(B), then F € CV(y) and G € ST (y). In particular, if 31 ,o; < 1, then F € CV(B) and G € ST (f).

Corollary 2.2. For i=1,2,...,n, let &, >0, 0< B <1 and y:=1->7,04(1—p;). For fie A, let Fu(fi,....fn) and
Gn(f1,....fa) be given by (1.3) and (1.4) respectively. If f; € CV(B;), then Fy(f1,....fo) € CV(y) and G (f1,....fa) € ST(y). In par-
ticular, if 31 ,04(1 — B) < 1, then F,(fi,...,fo) cCV and G,(fi,...,fr) € ST. Also if f € CV(«), 0 < o < 1, then F(f) c CV(a)
and G(f) c ST (a).
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Remark 2.1. Let 0 < o < 1. The inclusions G(f) ¢ S7(«) and F(f) c CV(«a) for f € CV(«) contained the results of Chandra and
Singh [14, Theorem 2.1, p. 1271 and Theorem 2.4 p. 1273]. The following result of Singh [25] is also contained in ours: If
fecy, then [j(f(t) - f(-t))/(2t)dt € CV.

Fori=1,2,...,nleto; > 0,0 < < 1and >} 0o = 1.Forf; € A, let Fbe given by (1.1). By Corollary 2.1, if f; € CV(), then
F € CV(B). This result is next proved in a more general setting:

Theorem 2.2. Fori=1,2,...,n, let a; > 0 and Y [_ ;o < 1. Let ¢ be convex in D with positive real part, and normalized by
@(0) = 1. If f; € CV(¢), then F given by (1.1) satisfies F € CV(¢p), and G given by (1.2) satifies G € ST ().

Proof. Let f; € CV(¢) so that

1 +Z}:é)) < @(2).

Since ¢ is a function with positive real part, it follows that

zf (2)
f " °

and hence f; is a convex function. As shown in the proof of Theorem 2.1, Lemma 1.2 yields

1+ Re

2,2f(222) — 212f(212)

fi(z22) - fi(z12) =< @(2),

or for any fixed z € D,

22 (222) — z12f (21 2)

fi(z22) - fi(z12)

Since ¢ is convex, and 1 = ¢(0) € ¢(D), the convex combination of n + 1 complex numbers

€ (D).

22f(222) — 212f}(212)

fiz22) — fi(z12)

is again in ¢(D):
n 22fi(z zlsz(zlz)>
1= o) ! € o(D).
13w+ (R <o
Thus it follows that
zzzf z1zf’(zlz)>
1= o]+ o < @(2).
( Z ) Z (HEen D) <o
In view of (2.3), the above subordination becomes
ZF'(2)

F(z)
which proves F € CV(¢). O

(i=1,2,....n),

1+

=< (),

Corollary 2.3. Let ¢ be convex in D with positive real part, and normalized by ¢(0) = 1. If f € CV(¢), then

f (220 ~f (= Jz:0) ~J@0) diecv(p) and fi(zzz) —f@2)

T(p).
Zz*Z] Zy —Z1 €8 ((,0)

Corollary 2.4. For i=1,2,...,n, let o; > 0 and >} ;o4 < 1. Let ¢ be convex in D with positive real part, and normalized by
@(0) =1. If fi e CV(¢), then ]—‘n(f],...,f ) CCV(@) and Gn(f1,....fn) C ST (). In particular, if f € CV(¢p), then F(f) C CV(@)
and G(f) C ST ().

3. Operators on subclasses of starlike and close-to-convex functions

In this section, we shall devote attention to the following special case of the operator F:

f (220) — ZlC)

@ =) dc.
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Theorem 3.1. Let ¢ be convex in D with positive real part, and normalized by ¢(0) = 1. If f € ST (¢), then F1 € ST ().

Proof. Since f € ST (¢), there exists a function g € CV(¢) such that f(z) = zg'(z). In fact, such a function g satisfies

g(az) = /0 f (czaf)

Using this identity, it follows that

f (z20) Zlé) dr = 8(222) — 8(z12)
Zz —21 - Zy — 71 ’

(|l < 1).

Since g € CV(¢), Corollary 2.3 shows that

8(22) — g(z12)
Zy — 71

and hence F; € ST (¢). O

€ ST(9),

Corollary 3.1. Let ¢ be convex in D with positive real part, and normalized by ¢(0) = 1. If f € ST (), then F(f) C ST ().

Remark 3.1. For 0 < a < 1, if f € ST («), then the above corollary shows that F(f) c ST («). This result contains a result of
[14, Theorem 2.3, p. 1273]. The above corollary also contains the following result of [25]: If fe &7, then

F(f) = fo —f(=t))/(2t)dt € ST.

Definition 2. Let ¢ and y be convex functions with positive real part and normalized respectively by ¢(0) = 1 and ¥(0) =
The class CC(¢, ) consists of functions f € A satisfying the subordination

f'@)
H(2)

where h € CV(y).
ForO<a, t<1,letg,:D — C and y, : D — C be defined by

0,(2) = 1+(1 —Zoc)z’ Vo(2) = 1+(1 —Zr)z.

1-z 1-z
In this case, the class CC(¢, ) reduces to the familiar class of univalent close-to-convex functions of order o and type t:

=< @(2),

CC(a, T) := {f € A:Re ({1/’((?)> > o, where h € CV(‘L’)}.

In this form, the class CC, investigated by Pommerenke [23] becomes a special case of CC(¢, ), that is,

1+2\"1+z
e, —CC(<1 72) ’E)'

The following closure property for the class CC(¢, y) contains a result of Pommerenke [23].

Theorem 3.2. If f € CC(¢, ), then Fy € CC(¢, ).

Proof. If f € CC(¢, ), then there exists a function h € CV(y) such that

f@
H(2)

< Q(2).
Corollary 2.3 yields

Hi(z) == /0 @0 =h@0) 4 ¢ ey,

(zo —z1)¢

Since Rey/(z) > 0, the function h is convex. It follows from Lemma 1.2 that

f(z22) - f(z12)
h(zjz) —h(z12) < 9().
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Since

Fi(2) _ f(z2) - f(z12)

Hi(z) h(z22) —h(z12)’
we deduce that F; € CC(¢,y¥). O

Corollary 3.2. If f € CC(¢, V), then F(f) c CC(@, ). In particular, for 0 < a, T < 1, if f € CC(«, T), then F(f) C CC(x, 7).

Remark 3.2. The second statement of the above corollary contains a result of [14, Theorem 2.6, p. 1274]. The above corollary
also contains the following result of [25]: If fecCC with respect to the convex function h, then
F(f) = [;(f(t) — f(~t))/(2t)dt € CC with respect to the convex function H(f) = [;(h(t) — h(-t))/(2t)dt.
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